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Products of the fos and jun Proto-
Oncogenes Bind Cooperatively to the APi

DNA Recognition Sequence

by Gundula Risse,* Manfred Neuberg,* John B. Hunter,*
Bernard Verrier,*t and Rolf Muller*

The products of the proto-oncogenes c-fos and c-jun form a tight protein complex that is a major
component of the transcription factor AP1. To analyze the role of fos in the binding of this complex to
the AP1 DNA recognition sequence and the mechanism of interaction in further detail, we have expressed
a fos protein in E. coli using an expression vector containing the temperature-inducible APL promoter and
a synthetic translational start codon. The fos protein encoded by this construct (termed Baf) was enriched
by biochemical purification techniques and was found to form a specific complex with c-jun obtained by
in vitro transcription/translation. As shown in gel retardation assays, the baf/jun complex binds to the
AP1 DNA recognition sequence with high affinity, while no significant binding was observed with either
of the individual protein components, indicating cooperative DNA binding of the two proteins. The fact
that the bacterial baf protein does not undergo glycosylation indicates that the post-translational modi-
fication of eukaryotic c-fo8 with N-acetylglucosamine is not required for the formation of a stable fos/jun/
DNA complex.

Introduction
The nuclear product (c-Fos) of the proto-oncogene

c-fos has been implicated in a variety of biological pro-
cesses including growth control, differentiation, and sig-
nal transduction in neurons (1-3). These multiple roles
of c-Fos seem to be cell-type specific and may thus be
due to the transregulation of defined sets of genes in
specific cell types. A great number of results obtained
within the last 2 years has provided overwhelming evi-
dence that Fos indeed plays a pivotal role in transcrip-
tional regulation (4). Based on the observation that
c-Fos is present in a transcription complex bound to the
promoter of the gene encoding the adipocyte protein
-2 (aP2) (5), it could be demonstrated that the Fos pro-
tein complex binds to the DNA recognition sequence
(TRE) of the transcription factor AP1 (6-11). AP1 had
previously been identified by virtue of its sequence-
specific interaction with the SV40 early promoter region
and its inducibility by the tumor promoter TPA (12-
14). Interestingly, a major component of AP1 is highly
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related to and probably identical to the product of the
proto-oncogene c-jun (15,16), pointing to a direct link
between the two nuclear proto-oncogene products. In
addition, it is now clear that the Fos-associated protein
p39, previously detected by virtue of its co-precipitation
by Fos antibodies (17-20) is identical to AP1 (8,10,21).
It could also be shown that Fos can transactivate APi-
dependent transcription in transient assays where Fos
expression vectors were co-transferred with a chimeric
TRE-HSVtK promoter-CAT construct into 3T3, HeLa,
or F9 cells (10,11,22,23). In addition, Fos can transre-
press certain promoters such as those of the c-fos and
HSP70 genes, but the mechanism of transrepression is
unclear (9,22,24).

In the present study we have investigated the recon-
stitution of a Fos/Jun complex in vitro to obtain direct
evidence for the association ofthese proteins, to analyze
the mechanism of their interaction, and to investigate
the role of the complex formation in their binding to the
TRE. For this purpose, we expressed Fos in E. coli
and used a fraction enriched in Fos protein in in vitro
reconstitution assays. Our results clearly show that the
bacterially expressed Fos forms a complex with Jun and
that this complex-in contrast to the individual pro-
teins-possesses a high affinity for the TRE. We also
show that glycosylation, which is found with cellular
Fos but not with Baf protein, is not required for the
formation of the Fos/Jun/TRE complex.
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Materials and Methods

Expression of Baf in E. coli
E. coli RR1 containing the pbaf plasmid (Fig. 1) were

grown in a New Brunswick gyrotory shaker at 30°C in
LB-medium supplemented with ampicillin (50 pRg/mL).
At early log-phase (OD600 0.1-0.3), cultures were trans-
ferred for 30 min to a water bath at 42°C followed by 1
hr incubation at 39°C on the shaker. Cells were collected
by centrifugation. The resulting pellet was resuspended
in 50 mM Tris, pH 8.0, 2 mM EDTA, 0.1 mM DTT, 5%
glycerol, 0.1 mM PMSF (buffer A, 3 mL/g cell pellet)
and treated with lysozyme (1 mg/mL) for 15 min at 25°C.
The cells were disrupted on ice with a sonicator (Bran-
son Sonifier B-12) by three 5-sec bursts using a micro-
probe. The lysate was centrifuged at lOOOg for 5 min at
4°C, and the resulting pellet was extracted twice in
buffer A (5-mL/g starting material) containing 1 M urea.
For each extraction step, cells were homogenized in
extraction buffer using a Dounce homogenizer and were
left for 45 min at 4°C on a rotating wheel. Insoluble
material was sedimented by centrifugation at 4°C in a
Beckman JA 20 rotor (14,000 rpm for 10 min). The re-
sulting final pellet was extracted overnight with 5M
urea in buffer A (5 mL/g starting material). After cen-
trifugation, as before, the supernatant was used for
further purification of Baf. The presence of Fos in the
various extraction steps was determined by immuno-
blotting.

EcoRI Hindill

N-terminal sequence:
22

Met - Asn - Glu - Phe - Glu - Leu - Gly - Thr - Pro - Ala - Gly - Asp - Ser . .....

vector- encoded fos

FIGURE 1. Structure of pbaf (top panel) and the encoded product
(Baf; bottom panel). The indicated Bgl II-Nco I and NcoI-Sal I
fragments from FBJ-MuSV and mouse c-fos, respectively, were
ligated together via the Nco I sites, subcloned into the Sma I and
Sal sites of pUC 19 after converting the overhang created by Bgl
II to a blunt end in a fill-in reaction using the Klenow fragment
of DNA polymerase I, exerting the insert with Eco RI and Hind
III and cloning into the corresponding site of pEV I (29).

Ion-Exchange Chromatography
A Q-Sepharose column (1 x 5 cm, Pharmacia, Upp-

sala, Sweden) was equilibrated in 20 mM Tris-HCl pH
8.0, 2.5 M urea (buffer B). Five molar urea extract
containing Fos protein was diluted 1:1 with buffer A
and applied at a flow rate of 0.8 mL/min. After washing
with buffer B, Fos protein was eluted with a linear 0
to 1 M NaCl gradient. Fractions of 1 mL were collected
and assayed for Fos protein by immunoblotting.

Immunoblotting
Samples were resolved on 10% SDS-polyacrylamide

gels and transferred onto nitrocellulose paper by elec-
troblotting in 25 mM Tris-HCl, pH 8.3, 193mM glycine,
and 20% methanol (2 hr, 100 V, 4°C). After saturation
in 5% nonfat dry milk in 50 mM Tris, pH 7.4, 150 mM
NaCl, 0.05% Tween 20 (MTTBS) for 1 hr at 25°C, the
membrane was incubated overnight at 4°C in a 1:400
dilution of anti-Fos antibody in MTTBS, washed five
times for 5 min each with TTBS, incubated 1 hr at 25°C
in MTTBS containing a 1:800 dilution of anti-rabbit IgG
peroxidase conjugate (Dakopatts), and washed as be-
fore. The color reaction was carried out in TBS plus 4.4
,uM H202, 16.6% methanol, and 4-chloro-1-naphthol
(Serva, 0.5 mg/mL).

In Vitro Reconstitution and
Immunoprecipitation

Linearized T7 expression plasmid, 1 ,ug containing
the c-jun cDNA (25) was incubated with 0.5 mM nu-
cleoside triphosphates (ATP, CTP, GTP, UTP), 1 unit
of RNAsin (Genofit), 0.4 OD260 units CAP nucleotide
(Boehringer) and 5 units of T7 RNA polymerase for 30
min at 37°C in a total volume of 50 ,uL transcription
buffer (40 mM Tris, pH 7.9, 6 mM MgCl2, 2 mM sper-
midine, 10 ,uM dithiothreitol, 5 ,ug bovine serum albu-
min). Another 5 units of enzyme were added, and the
reaction mixture was incubated for 30 min. The RNA
was checked for integrity on a 1% agarose gel. In vitro
transcribed RNA was mixed with 60 ,uL of reticulocyte
lysate (Amersham)rplus, ifthe protein was to be labeled,
30 ,uL (450 ,uCi) of 3 S-methionine. The reaction mixture
was adjusted to 150 ,uL with H20 and incubated at 30°C
for 1 hr.
Complex formation was carried out by incubating in

vitro translated 35S-labeled c-Jun and unlabeled extracts
(13 pL and 10 ,uL, respectively), in 30 ,uL H20 for 1 hr
at 30°C. After the addition of 5 ,uL of 10 x RIPA buffer,
the mixture was incubated with 4 ,uL of antiserum 455
(26,27) for 1 hr on ice followed by incubation with 40
,uL Pansorbin (Calbiochem) for 1 hr. Immune complexes
were sedimented and washed twice with RIPA buffer.
SDS sample buffer was added to the pellet, the samples
heated to 95°C for 3 min, and separated on a 11.5%
SDS-polyacrylamide gel. After electrophoresis, gels
were processed in Amplify (Amersham), dried, and ex-
posed to Fuji RX film.

134



INTERACTION OF THE FOS AND JUN GENE PRODUCTS

Gel Retardation Analysis
Binding reactions were performed by preincubating

10 ,uL Baf and 5 ,iL in vitro translated c-Jun, either
alone or combined, with 1 pug of poly(dI-dC) in a buffer
containing 10mM Hepes, pH 7.9, 60mM KCI, 4% Ficoll,
1 mM EDTA, and 1 mM DTT for 60 min at 25°C. Double-
stranded oligonucleotide, 32P-labeled with polynucleo-
tide kinase, 3.5 fmole, was added and incubation was
continued for 30 min at room temperature. The reaction
mixtures were separated on 4% polyacrylamide gels at
room temperature at 10 V/cm (28). Gels were dried and
exposed to Kodak RP film.

Lectin Binding
Wheat germ agglutinin (WGA) immobilized on Aga-

rose (Pharmacia) was washed three times with TTBS
(50 mM Tris, pH 7.4, 150 mM NaCl, 0.05% TWEEN
20), resuspended in 1 volume TTBS, and incubated for
16 hr at 4°C with an equal volume of HeLa cell or bac-
terial.cell extract, respectively (300 jig protein). Prior
to the lectin binding reaction, the bacterial cell extract
was incubated with reticulocyte lysate for 2 hr at 25°C.
After extensive washing in TTBS, the beads were ex-
tracted at 95°C for 5 min with SDS sample buffer. The
extracts were resolved by SDS-PAGE and analyzed by
Western blotting using anti-Fos antibodies (27). For
competition experiments the WGA beads were sus-
pended in 2 volumes of TTBS containing 0.5 M N-ace-
tylglucosamine for 2 hr at 4°C on a rotating wheel. The
binding reaction was carried out in the presence of 0.25
M N-acetylglucosamine.

Results
Expression of Fos Protein in E. coli and
Enrichment for Baf by Ion-Exchange
Chromatography
As the expression vector for production of Fos in E.

coli we chose pEV1 containing the heat-inducible PL
promoter, a 5' located start codon and multiple cloning
site (29). To generate the Fos insert, we first subcloned
an intronless hybrid v-fos/c-fos gene into pUC19, re-
leased the insert with EcoRI and Hind III, and intro-
duced this fragment into pEV1 via the corresponding
restriction sites generating the pbaf construct (Fig. 1).
The product encoded by pbaf consists of 8 N-terminal
vector-derived amino acids fused to 359 amino acids of
Fos (residues 22-380 of c-Fos) (Fig. 1). Otherwise, this
protein which will be subsequently referred to as Baf,
differs from c-Fos only in the 5 FBJ-MSV-specific single
amino acid changes (30). The pbaf construct was intro-
duced into E. coli. RR1 cells and individual colonies
were analyzed for Baf expression. Two different clones
were analyzed in Figure 2 and used for subsequent anal-
yses, one clone expressing Baf only after heat induction
and one clone expression Baf constitutively (Fig. 2). The

FIGURE 2. Expression and extraction of Baf. Proteins were sepa-
rated by SDS-PAGE and analyzed by Western blotting using a
Fos-specific antiserum (38). Left panel: inducible clone (0, before
induction; Ind, after heat induction for 2 hr). Right panel: consti-
tutively expressing clone (C, whole cells; S, supernatant after cell
lysis and centrifugation; 1 M and 5 M, urea extracts of pellets. M,
molecular mass of marker proteins).

Mr of full-length Baf is approximately 45 kd, the other
bands visible on the Western blot in Figure 2 presum-
ably represent degradation products of Baf. The abso-
lute amount of Baf produced in these cells is relatively
low, since we were not able to detect Baf reproducibly
on Coomassie blue-stained polyacrylamide gels without
further purification (not shown). In the bacterial ex-
tract, the majority of the Baf protein was found to be
insoluble. After centrifugation of the homogenate the
supernatant did not contain any detectable amount of
the full-length product and only a. small fraction of the
shorter Mr form (Fig. 2). However, Baf protein could
be readily solubilized from the pellet by dissolving in
5M urea (Fig. 2).
The extracted Baf protein was further enriched by

chromatography on a Q-Sepharose ion exchange column
run in the presence of 2.5 M urea and eluted with a
linear gradient of 0 to 1 M NaCl (Fig. 3A). The protein
eluted from this column was collected in approximately
60 fractions, which were analyzed for the presence of
Baf by Western blotting. Figure 3B shows that Baf
eluted within a narrow range, approximately in pools
C and D, corresponding to fractions 43 to 48 in Figure
3A. These fractions were pooled and used for the sub-
sequent binding studies.

Complex Formation between Baf and In
Vitro Translated c-Jun
Baf protein was then used in an in vitro assay to

reconstitute a Fos/Jun complex. For this purpose, ra-
dioactively labeled c-Jun was synthesized by in vitro
transcription/translation of a c-Jun cDNA in a T7 poly-
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FIGURE 3. Fractionation of bacterial extract (urea-subsidized pel-
lets; see Fig. 2) on Q-Sepharose. (A) OD,.o; NaCl gradient (0-1
M). Letters indicate pooled fractions analyzed in (B). (B) Western
blot analysis of pooled fractions A-G. Ex, extract applied to col-
umn; Fl, flow through.

merase/reticulocyte system and incubated with Baf.
The mixture was then subjected to immunoprecipitation
using a Fos-specific antibody that does not cross-react
with Jun (Fig. 4). The precipitation of 35S-labeled c-Jun
in the presence of Baf indicates the formation of a pro-
tein complex between Baf and Jun. No significant
amount of Jun was precipitated when control prepara-
tion from the parental RR1 cells (which do not harbor
the pbaf plasmid) were incubated with the labeled c-Jun
or when the fos-specific antibody was omitted from the
immunoprecipitation. These findings strongly suggest
that the Baf protein is capable of forming a complex
with c-Jun protein.

FIGURE 4. In vitro reconstitution of a Baf/c-Jun complex. 'S-la-
beled, in vitro translated c-Jun was incubated with buffer only
(lane 0), with extract from RR1 bacteria not expressing Baf (lane
RR1) or with two different preparations of Baf (lanes 1 and 2) and
immunoprecipitated with Fos-specific antibodies. C, control for
lane 1 where Fos antibodies were omitted.

Baf and c-Jun Act Synergistically to Form
a Complex of High Affinity for the API
Binding Site
To investigate the role of complex formation between

Fos and Jun, we analyzed the binding properties of Baf
and Jun individually or as a complex for the AP1 DNA
recognition sequence. This experiment was performed
by using these proteins and a 2P-labeled synthetic oli-
gonucleotide (designated apl) containing a palindromic
AP1 binding site in a gel retardation assay. Figure 5
shows that neither c-Jun nor Fos produced any detect-
able band shift, while the Baf/c-Jun complex gave a very
strong shift. The Baf/Jun/DNA complex formation was
also performed in the presence of excess unlabeled com-
petitor oligonucleotides. Figure 6 shows that only the
specific apl oligonucleotide but not the random oligo-
nucleotide (rd) was able to abolish the band shift. This
demonstrates that the retarded band indeed represents
a specific complex between Baf, c-Jun, and the AP1
binding site. In addition, a complex of very similar elec-
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FIGURE 5. Formation of a stable, specific complex between Baf, Jun
and the TRE. Synthetic double-stranded oligonucleotide (upper
strand: 5' AAGCA TGAGTCAGACAC; TRE underlined) was end-
labeled with 32P, incubated with either the in vitro translated Jun,
Baf, or the Jun/Baf complex, and separated by nondenaturing
PAGE. Unbound oligonucleotides are visible at the bottom of the
gel; the weak shifted band in the Baf lane is nonspecific as shown
in competition experiments (not shown).

trophoretic mobility was found when nuclear extract
from serum-stimulated HeLa cells was used in the gel
retardation experiment (Fig. 6).

O-Glycosylation of Fos Is Not Required for
the Formation of a Stable Fos/Jun/TRE
Complex

It has recently been shown that the transcription fac-
tor SP-1 purified from HeLa cells is post-translationally
modified by 0-glycosylation and binds to wheat germ
agglutinin (WGA) (31). The presence of the 0-linked
N-acetylglucosamine residues appears to be important
for transcriptional activation by SP1 (31). In the same
study it was shown that other transcription factors,
among them the APl/Fos protein complex, can be la-
beled in vitro by 3H-galactose and galactosyl transfer-
ase (an enzyme transferring galactose onto terminal
GlcNAc residues), but the nature and role of this mod-
ification was not investigated further. To elucidate some
of these questions, we analyzed the cellular Fos protein
complex and Baf protein for their affinity for WGA.
Figure 7 shows that the Fos protein complex from nu-
clear HeLa cell extract binds to WGA and that this
binding can be blocked by N-acetylglucosamine. In con-
trast, Baf protein does not bind to any significant ex-
tent, even after incubation with reticulocyte extract.
(This control was important to show that no glycosy-
lation occurs during complex formation with the in vitro
translated c-Jun.) These results therefore indicate that

FIGURE 6. Competition of Baf/Jun/TRE complex formation by spe-
cific (apl) and nonspecific (rd) oligonucleotides. Lanes 1, 2, 3, and
4 represent 10-, 100-, 1000- and 10,000-fold excesses of competitor
DNA. The sequence of apl is identical to the labeled oligonucleo-
tide; rd has the sequence 5' GCGACTAACATCGATCG (upper
strand). The right-most lane shows a band shift with nuclear ex-
tract from serum-stimulated HeLa cells.

the formation of a stable Fos/Jun/TRE complex does
not require 0-glycosylation of Fos.

Discussion
It is now well established that Fos protein plays a

crucial role in the regulation of APi-dependent tran-
scription. This is mainly based on two lines of evidence.
First, Fos is a constituent of transcription complexes
forming over AP1 DNA recognition sequences (5-
8,10,32), and second, Fos can transactivate promoters
containing AP1 binding sites (TREs), such as the human
collagenase promoter or the HSV-tk-promoter, after
insertion of 5 TRE elements (8,10,11,22). In these tran-
scription complexes Fos tightly associates with APi/

....:p. i I,comp. - |
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teins. Nuclear extract from serum-stimnulated HeLa cells and urea
extract from bacterial cells respectively, were incubated with
wheat germn agglutinin (WGA) agarose in presence (+) or absence

()of N-acetylglucosamine (GluNAc), a competitive inhibitor of
WGA. Bound proteins were eluted by heating the matrix in SDS-
sample buffer, resolved on a 10% SDS-polyacrylanide gel, and
assayed for Fos by immunoblotting. C, material applied to WGA
matrix.

Jun (6,8,10) which is identical with the previously iden-
tified Fos-associated protein p39 (17-20). In the present
study we have attempted to reconstitute a protein com-
plex between Fos and Jun proteins. For this purpose,
we have expressed and partially purified Fos protein in
bacteria. This Baf protein is largely identical with c-
Fos, except for the substitution of 21 amino acids at the
N-terminus with 6 vector-derived amino acids and 5
internal point mutations (Fig. 1). All these alterations,
however, have no noticeable effect on the biological
properties of the Fos oncogene product (11 26; unpub-
lished data).
Our data clearly show that Baf forms a specific com-

plex with c-Jun protein obtained by in vitro translation
(Fig. 4) and that only this complex binds with high af-
finity to the APi DNA recognition sequence (Fig. 5).
In contrast, the individual Baf and Fos proteins do not
bind to any detectable extent in this assay. It has been
described that bacterially expressed Jun can bind to the
TRE (15). This may be due to the high concentration
of Jun present in bacterial extract, which may compen-
sate for the low affinity of Jun protein for the TRE. In
a recent study, it was indeed shown that in vitro trans-
lated Jun protein binds to an oligonucleotide containing
an APi site when the concentration of operator DNA
is very high (32)g Taken together these observations
suGgest thapteFosp wroein stbluiestbyhea wheak bindingr of

Jun protein to the TRE. We have recently been able to
show by site-directed mutagenesis that specific amino
acid sequences in Fos are required for the formation of
a stable Fos/Jun/TRE complex (33-35), pointing to a
sequence-specific DNA recognition by Fos. It thus ap-
pears that in the protein complex forming between Fos
and Jun via the "leucine zipper" (36-38) both constit-
uents bind to specific DNA sequences, probably located
within the TRE.

In agreement with our results obtained with the bac-
terial Fos protein, it has been shown in several other
studies that both in vitro Fos and Jun are required for
the formation of a stable complex with the TRE in vitro
(32,33,37,39,40). In one of these studies (39), it was also
shown that Fos is unable to form homodimers, which
probably explains why Baf does not show any specific
binding to the TRE in our gel retardation assays (Fig.
5).
The Fos protein complex has recently been reported

to be labeled in vitro by 3H-galactose and galactosyl
transferase (31). We therefore investigated whether
O-glycosylation of Fos protein is required for the for-
mation of a Fos/Jun/TRE complex. Our findings confirm
the post-translational addition of sugar residues to cel-
lular Fos protein complex that could be shown to bind
to WGA, indicating the presence of N-acetylglucos-
amine (Fig. 7). In contrast, no such modification is pres-
ent in Baf (Fig. 7). This observation shows that 0-
glycosylation of Fos is not required for the sequence-
specific DNA binding of the Fos/Jun complex, an ob-
servation that is in agreement with the data obtained
for the transcription factor SP1 (31). It may be that, as
in the case of SP1, glycosylation of Fos is required for
its transregulatory properties.
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